Public release date: 16-Oct-2013
[
| Share
]
Contact: Stewart Bland
s.bland@elsevier.com
44-186-584-3124
Elsevier
Journal Carbon publishes a recommended nomenclature for 2D carbon forms
Oxford, October 16, 2013 - There has been an intense research interest in all two-dimensional (2D) forms of carbon since Geim and Novoselov's discovery of graphene in 2004. But as the number of such publications rise, so does the level of inconsistency in naming the material of interest. The isolated, single-atom-thick sheet universally referred to as "graphene" may have a clear definition, but when referring to related 2D sheet-like or flake-like carbon forms, many authors have simply defined their own terms to describe their product.
This has led to confusion within the literature, where terms are multiply-defined, or incorrectly used. The Editorial Board of Carbon has therefore published the first recommended nomenclature for 2D carbon forms.
The editorial team spent eight months working on setting the definitions. They believe that agreeing on a rational scientific nomenclature could enable more rapid development in the field, and with a "higher degree of common understanding". Editor-in-Chief of Carbon, Professor Robert Hurt (Institute for Molecular and Nanoscale Innovation, School of Engineering, Brown University, USA) succinctly summarizes the need for this work with the phrase: "Precise names promote precise ideas."
A series of basic guiding principles to define the terms was used in the study, where possible making use of established definitions, and clarifying rather than replacing existing terms. The study also recognizes that researchers will want to continue using the word "graphene" in publications, and so have recommended "graphene materials" as the overarching phrase to describe 2D carbons. In this way, the publication offers itself as a practical guide for naming such materials, for carbon scientists in all fields and at all stages in their careers.
One proposal is that all definitions of graphene materials should go beyond crystallography, and should include morphological descriptors for shape and size namely the thickness (layer number), lateral dimensions and in-plane shape of these carbon layers.
To move graphene materials beyond the early discovery phase and into applications, internationally-recognized definitions of each carbon form will be needed. In the 1990s, the lack of agreed definitions for nanofibers, nanorods and nanotubes led to several International Standards on the topic, which, when published, brought consistency to the field.
"This study is a great way to open the discussion on graphene terminology, and welcomes any formal standardization efforts for 2D carbons in the future," concludes Prof Hurt c "We would be delighted if the community at large saw sufficient value in the recommendations to use them more broadly."
###
Notes for Editors
This article is "All in the graphene family A recommended nomenclature for two-dimensional carbon materials" by Alberto Bianco, Hui-Ming Cheng, Toshiaki Enoki, Yury Gogotsi, Robert H. Hurt, Nikhil Koratkar, Takashi Kyotani, Marc Monthioux, Chong Rae Park, Juan M.D. Tascon and Jin Zhang. It appears in Carbon, Volume 65, December 2013, Pages 1-6 (2013) published by Elsevier. The article is available for free at http://www.materialstoday.com . An interview with Carbon Editor-in-Chief, Prof Robert Hurt, is available here.
About Carbon
An International Journal Founded in Conjunction with the American Carbon Society
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials and carbon nanomaterials. The journal reports significant new findings related to the formation, structure, properties, behaviors, and technological applications of carbons, which are a broad class of ordered or disordered solid phases composed primarily of elemental carbon. These materials can be either synthetic or of natural origin, and include, but are not limited to, graphene and graphene-oxide, carbon nanotubes, carbon fibers and filaments, graphite, porous carbons, pyrolytic carbon, glassy carbon, carbon black, diamond and diamond-like carbon, fullerenes, and chars. Papers on composites will be considered if the carbon component is a major focus of the paper's scientific content. Papers on organic substances may be considered if they are precursors for such carbon materials. Relevant application areas for carbon materials include, but are not limited to, electronic and photonic devices, structural and thermal applications, smart materials and systems, energy storage and conversion, catalysis, environmental protection, and biology and medicine.
About Elsevier
Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include ScienceDirect, Scopus, SciVal, Reaxys, ClinicalKey and Mosby's Suite, which enhance the productivity of science and health professionals, helping research and health care institutions deliver better outcomes more cost-effectively.
A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world leading provider of professional information solutions. The group employs more than 30,000 people, including more than 15,000 in North America. Reed Elsevier Group PLC is owned equally by two parent companies, Reed Elsevier PLC and Reed Elsevier NV. Their shares are traded on the London, Amsterdam and New York Stock Exchanges using the following ticker symbols: London: REL; Amsterdam: REN; New York: RUK and ENL.
Media contact
Stewart Bland
Elsevier
+44 1865 843124
s.bland@elsevier.com
[
| Share
]
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Public release date: 16-Oct-2013
[
| Share
]
Contact: Stewart Bland
s.bland@elsevier.com
44-186-584-3124
Elsevier
Journal Carbon publishes a recommended nomenclature for 2D carbon forms
Oxford, October 16, 2013 - There has been an intense research interest in all two-dimensional (2D) forms of carbon since Geim and Novoselov's discovery of graphene in 2004. But as the number of such publications rise, so does the level of inconsistency in naming the material of interest. The isolated, single-atom-thick sheet universally referred to as "graphene" may have a clear definition, but when referring to related 2D sheet-like or flake-like carbon forms, many authors have simply defined their own terms to describe their product.
This has led to confusion within the literature, where terms are multiply-defined, or incorrectly used. The Editorial Board of Carbon has therefore published the first recommended nomenclature for 2D carbon forms.
The editorial team spent eight months working on setting the definitions. They believe that agreeing on a rational scientific nomenclature could enable more rapid development in the field, and with a "higher degree of common understanding". Editor-in-Chief of Carbon, Professor Robert Hurt (Institute for Molecular and Nanoscale Innovation, School of Engineering, Brown University, USA) succinctly summarizes the need for this work with the phrase: "Precise names promote precise ideas."
A series of basic guiding principles to define the terms was used in the study, where possible making use of established definitions, and clarifying rather than replacing existing terms. The study also recognizes that researchers will want to continue using the word "graphene" in publications, and so have recommended "graphene materials" as the overarching phrase to describe 2D carbons. In this way, the publication offers itself as a practical guide for naming such materials, for carbon scientists in all fields and at all stages in their careers.
One proposal is that all definitions of graphene materials should go beyond crystallography, and should include morphological descriptors for shape and size namely the thickness (layer number), lateral dimensions and in-plane shape of these carbon layers.
To move graphene materials beyond the early discovery phase and into applications, internationally-recognized definitions of each carbon form will be needed. In the 1990s, the lack of agreed definitions for nanofibers, nanorods and nanotubes led to several International Standards on the topic, which, when published, brought consistency to the field.
"This study is a great way to open the discussion on graphene terminology, and welcomes any formal standardization efforts for 2D carbons in the future," concludes Prof Hurt c "We would be delighted if the community at large saw sufficient value in the recommendations to use them more broadly."
###
Notes for Editors
This article is "All in the graphene family A recommended nomenclature for two-dimensional carbon materials" by Alberto Bianco, Hui-Ming Cheng, Toshiaki Enoki, Yury Gogotsi, Robert H. Hurt, Nikhil Koratkar, Takashi Kyotani, Marc Monthioux, Chong Rae Park, Juan M.D. Tascon and Jin Zhang. It appears in Carbon, Volume 65, December 2013, Pages 1-6 (2013) published by Elsevier. The article is available for free at http://www.materialstoday.com . An interview with Carbon Editor-in-Chief, Prof Robert Hurt, is available here.
About Carbon
An International Journal Founded in Conjunction with the American Carbon Society
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials and carbon nanomaterials. The journal reports significant new findings related to the formation, structure, properties, behaviors, and technological applications of carbons, which are a broad class of ordered or disordered solid phases composed primarily of elemental carbon. These materials can be either synthetic or of natural origin, and include, but are not limited to, graphene and graphene-oxide, carbon nanotubes, carbon fibers and filaments, graphite, porous carbons, pyrolytic carbon, glassy carbon, carbon black, diamond and diamond-like carbon, fullerenes, and chars. Papers on composites will be considered if the carbon component is a major focus of the paper's scientific content. Papers on organic substances may be considered if they are precursors for such carbon materials. Relevant application areas for carbon materials include, but are not limited to, electronic and photonic devices, structural and thermal applications, smart materials and systems, energy storage and conversion, catalysis, environmental protection, and biology and medicine.
About Elsevier
Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include ScienceDirect, Scopus, SciVal, Reaxys, ClinicalKey and Mosby's Suite, which enhance the productivity of science and health professionals, helping research and health care institutions deliver better outcomes more cost-effectively.
A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world leading provider of professional information solutions. The group employs more than 30,000 people, including more than 15,000 in North America. Reed Elsevier Group PLC is owned equally by two parent companies, Reed Elsevier PLC and Reed Elsevier NV. Their shares are traded on the London, Amsterdam and New York Stock Exchanges using the following ticker symbols: London: REL; Amsterdam: REN; New York: RUK and ENL.
Media contact
Stewart Bland
Elsevier
+44 1865 843124
s.bland@elsevier.com
[
| Share
]
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2013-10/e-dtg101613.php
Similar Articles: Yahoo Fantasy Football What Is Labor Day Hugh Douglas chris brown raven symone
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.